首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6480篇
  免费   977篇
  国内免费   541篇
化学   4574篇
晶体学   31篇
力学   353篇
综合类   16篇
数学   786篇
物理学   2238篇
  2023年   146篇
  2022年   107篇
  2021年   225篇
  2020年   279篇
  2019年   233篇
  2018年   211篇
  2017年   172篇
  2016年   279篇
  2015年   264篇
  2014年   355篇
  2013年   438篇
  2012年   593篇
  2011年   618篇
  2010年   413篇
  2009年   349篇
  2008年   423篇
  2007年   373篇
  2006年   348篇
  2005年   265篇
  2004年   201篇
  2003年   157篇
  2002年   119篇
  2001年   125篇
  2000年   113篇
  1999年   125篇
  1998年   98篇
  1997年   87篇
  1996年   117篇
  1995年   101篇
  1994年   70篇
  1993年   62篇
  1992年   67篇
  1991年   56篇
  1990年   74篇
  1989年   53篇
  1988年   34篇
  1987年   29篇
  1986年   24篇
  1985年   18篇
  1984年   16篇
  1983年   16篇
  1982年   15篇
  1981年   10篇
  1980年   8篇
  1979年   20篇
  1978年   15篇
  1977年   14篇
  1976年   10篇
  1975年   13篇
  1973年   13篇
排序方式: 共有7998条查询结果,搜索用时 195 毫秒
71.
We report on the largest open-shell graphenic bilayer and also the first example of triply negatively charged radical π-dimer. Upon three-electron reduction, bilayer nanographene fragment molecule (C96H24Ar6)2 (Ar=2,6-dimethylphenyl) ( 1 2) was transformed to a triply negatively charged species 1 23.−, which has been characterized by single-crystal X-ray diffraction, electron paramagnetic resonance (EPR) spectroscopy and magnetic properties on a superconducting quantum interference device (SQUID). 1 23.− features a 96-center-3-electron (96c/3e) pancake bond with a doublet ground state, which can be thermally excited to a quartet state. It consists of 34 π-fused rings with 96 conjugated sp2 carbon atoms. Spin frustration is observed with the frustration parameter f>31.8 at low temperatures in 1 23.−, which indicates graphene upon reduction doping may behave as a quantum spin liquid.  相似文献   
72.
Molecular recognition of complex isomeric biomolecules remains challenging in surface-enhanced Raman scattering (SERS) spectroscopy due to their small Raman cross-sections and/or poor surface affinities. To date, the use of molecular probes has achieved excellent molecular sensitivities but still suffers from poor spectral specificity. Here, we induce “charge and geometry complementarity” between probe and analyte as a key strategy to achieve high spectral specificity for effective SERS molecular recognition of structural analogues. We employ 4-mercaptopyridine (MPY) as the probe, and chondroitin sulfate (CS) disaccharides with isomeric sulfation patterns as our proof-of-concept study. Our experimental and in silico studies reveal that “charge and geometry complementarity” between MPY's binding pocket and the CS sulfation patterns drives the formation of site-specific, multidentate interactions at the respective CS isomerism sites, which “locks” each CS in its analogue-specific complex geometry, akin to molecular docking events. Leveraging the resultant spectral fingerprints, we achieve > 97 % classification accuracy for 4 CSs and 5 potential structural interferences, as well as attain multiplex CS quantification with < 3 % prediction error. These insights could enable practical SERS differentiation of biologically important isomers to meet the burgeoning demand for fast-responding applications across various fields such as biodiagnostics, food and environmental surveillance.  相似文献   
73.
Anion-π catalysis operates by stabilizing anionic transition states on π-acidic aromatic surfaces. In anion-(π)n-π catalysis, π stacks add polarizability to strengthen interactions. In search of synthetic methods to extend π stacks beyond the limits of foldamers, the self-assembly of micelles from amphiphilic naphthalenediimides (NDIs) is introduced. To interface substrates and catalysts, charge-transfer complexes with dialkoxynaphthalenes (DANs), a classic in supramolecular chemistry, are installed. In π-stacked micelles, the rates of bioinspired ether cyclizations exceed rates on monomers in organic solvents by far. This is particularly impressive considering that anion-π catalysis in water has been elusive so far. Increasing rates with increasing π acidity of the micelles evince operational anion-(π)n-π catalysis. At maximal π acidity, autocatalytic behavior emerges. Dependence on position and order in confined micellar space promises access to emergent properties. Anion-(π)n-π catalytic micelles in water thus expand supramolecular systems catalysis accessible with anion-π interactions with an inspiring topic of general interest and great perspectives.  相似文献   
74.
Replacing widely used organic liquid electrolytes with solid-state electrolytes (SSEs) could effectively solve the safety issues in sodium-ion batteries. Efforts on seeking novel solid-state electrolytes have been continued for decades. However, issues about SSEs still exist, such as low ionic conductivity at ambient temperature, difficulty in manufacturing, low electrochemical stability, poor compatibility with electrodes, etc. Here, sodium carbazolide (Na-CZ) and its THF-coordinated derivatives are rationally fabricated as Na+ conductors, and two of their crystal structures are successfully solved. Among these materials, THF-coordinated complexes exhibit fast Na+ conductivities, i.e., 1.20×10−4 S cm−1 and 1.95×10−3 S cm−1 at 90 °C for Na-CZ-1THF and Na-CZ-2THF, respectively, which are among the top Na+ conductors under the same condition. Furthermore, stable Na plating/stripping is observed even over 400 h cycling, showing outstanding interfacial stability and compatibility against Na electrode. More advantages such as ease of synthesis, low-cost, and cold pressing for molding can be obtained. In situ NMR results revealed that the evaporation of THF may play an essential role in the Na+ migration, where the movement of THF creates defects/vacancies and facilitates the migration of Na+.  相似文献   
75.
Ether solvents with superior reductive stability promise excellent interphasial stability with high-capacity anodes while the limited oxidative resistance hinders their high-voltage operation. Extending the intrinsic electrochemical stability of ether-based electrolytes to construct stable-cycling high-energy-density lithium-ion batteries is challenging but rewarding. Herein, the anion-solvent interactions were concerned as the key point to optimize the anodic stability of the ether-based electrolytes and an optimized interphase was realized on both pure-SiOx anodes and LiNi0.8Mn0.1Co0.1O2 cathodes. Specifically, the small-anion-size LiNO3 and tetrahydrofuran with high dipole moment to dielectric constant ratio realized strengthened anion-solvent interactions, which enhance the oxidative stability of the electrolyte. The designed ether-based electrolyte enabled a stable cycling performance over 500 cycles in pure-SiOx||LiNi0.8Mn0.1Co0.1O2 full cell, demonstrating its superior practical prospects. This work provides new insight into the design of new electrolytes for emerging high-energy density lithium-ion batteries through the regulation of interactions between species in electrolytes.  相似文献   
76.
Precise regulation of vascular senescence represents a far-reaching strategy to combat age-related diseases. However, the high heterogeneity of senescence, alongside the lack of targeting and potent senolytics, makes it very challenging. Here we report a molecular design to tackle this challenge through multidimensional, hierarchical recognition of three hallmarks commonly shared among senescence, namely, aptamer-mediated recognition of a membrane marker for active cell targeting, a self-immolative linker responsive to lysosomal enzymes for switchable drug release, and a compound against antiapoptotic signaling for clearance. Such senolytic can target and trigger severe cell apoptosis in broad-spectrum senescent endothelial cells, and importantly, distinguish them from the quiescent state. Its potential for in vivo treatment of vascular diseases is successfully illustrated in a model of atherosclerosis, with effective suppression of the plaque progression yet negligible side effects.  相似文献   
77.
We demonstrate that an ordered 2D perovskite can significantly boost the photoelectric performance of 2D/3D perovskite heterostructures. Using selective fluorination of phenyl-ethyl ammonium (PEA) lead iodide to passivate 3D FA0.8Cs0.2PbI3, we find that the 2D/3D perovskite heterostructures passivated by a higher ordered 2D perovskite have lower Urbach energy, yielding a remarkable increase in photoluminescence (PL) intensity, PL lifetime, charge-carrier mobilities (ϕμ), and carrier diffusion length (LD) for a certain 2D perovskite content. High performance with an ultralong PL lifetime of ≈1.3 μs, high ϕμ of ≈18.56 cm2 V−1 s−1, and long LD of ≈7.85 μm is achieved in the 2D/3D films when passivated by 16.67 % para-fluoro-PEA2PbI4. This carrier diffusion length is comparable to that of some perovskite single crystals (>5 μm). These findings provide key missing information on how the organic cations of 2D perovskites influence the performance of 2D/3D perovskite heterostructures.  相似文献   
78.
Drug resistance is a serious challenge for platinum anticancer drugs. Platinum complexes may get over the drug resistance via a distinct mechanism of action. Cholesterol is a key factor contributing to the drug resistance. Inhibiting cellular cholesterol synthesis and uptake provides an alternative strategy for cancer treatment. Platinum(IV) complexes FP and DFP with fenofibric acid as axial ligand(s) were designed to combat the drug resistance through regulating cholesterol metabolism besides damaging DNA. In addition to producing reactive oxygen species and active platinum(II) species to damage DNA, FP and DFP inhibited cellular cholesterol accumulation, promoted cholesterol efflux, upregulated peroxisome proliferator-activated receptor alpha (PPARα), induced caspase-1 activation and gasdermin D (GSDMD) cleavage, thus leading to both apoptosis and pyroptosis in cancer cells. The reduction of cholesterol significantly relieved the drug resistance of cancer cells. The double-acting mechanism gave the complexes strong anticancer activity in vitro and in vivo, particularly against cisplatin-resistant cancer cells.  相似文献   
79.
To investigate the effect of ligand remote (>10 Å) substituents on the bridging metal center on the metal-to-metal charge transfer (MMCT) properties in cyanidometa-bridged complexes, a series of new cyanidometal-bridged complexes and their one-electron and two-electron oxidation products have been synthesized and well characterized (namely, trans-[Cp(dppe)Fe−NC−(L)Ru(PPh3)−CN−Fe(dppe)Cp][PF6]n (n=2, 3, 4) (L=dmptpy, 1[PF6]n ; L=meoptpy, 2[PF6]n ; L=t-Buptpy, 3[PF6]n ) (Cp=1,3-cyclopentadiene, dppe=1,2-bis(diphenylphosphino)ethane, PPh3=triphenylphosphine, dmptpy=4′-(4-dimethylaminophenyl)-2,2′,6′,2′′-terpyridine, meoptpy=4′-(4-methoxyphenyl)-2,2′,6′,2′′-terpyridine, t-Buptpy=4′-(4-tertbutylphenyl)-2,2′,6′,2′′-terpyridine)). The investigations suggest that the cyanido-stretching (νCN) vibration energy for the complexes is unsensitive to the electron-donating ability change of the remote substituents of the cyanidometal bridging auxiliary ligand from tertbutyl, methoxy to dimethylamino group. However, the MMCT energies of the one- and two-electron oxidation complexes are still sensitive to the remote substituents of the ligand on the bridging metal center, and decreases with the increase of the electron-donating ability of the remote substituents from tertbutyl, methoxy to dimethylamino group. All one-electron and two-electron oxidation products belong to Class II mixed valence compounds according to the classification of Robin and Day.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号